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Abstract-The movement of the hangingwall over the footwall at thrust ramps produces a variety of structures 
found commonly at different scales in fold-and-thrust belts. The nature of the structure depends on the relative 
rigidity of the hangingwall and footwall, friction along the fault, fault ‘dip’, fault displacement, and the boundary 
conditions of the deformation. Structures include fault-bend style folds, fault-propagation style folds and wedge 
folds. We investigate the initial stages of development of such structures using the finite-difference code FLAC. The 
rock layers are represented as continua with elastic-plastic MohrCoulomb constitutive relations, and the fault and 
bounding bedding planes are assigned normal and shear stiffnesses and coefficients of friction. Under conditions 
with all layers compressed, antisymmetric fault-propagation style folds develop in both the hangingwall and 
footwall. With rigid footwall and restricted far-field slip in the hangingwall, a single fault-propagation style fold 
develops. With far-field displacement of the hangingwall allowed, broader antisymmetric wedge folds develop if 
hangingwall and footwall are deformable, and a single fault-bend style fold develops if the footwall is rigid. All 
structures become accentuated with increasing slip on the fault. Where both hangingwall and footwall are 
deformable, the deformation reduces the ramp angle and tends to minimize distortion of the rock adjacent to the 
fault. Fault-propagation style folds, paired wedge folds and fault-bend style folds are common in nature, and small- 
scale examples can be found in various stages of development. Continued slip on thrust faults may lead to the 
mature structures commonly seen in fold-and-thrust belts. 0 1997 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Folding and faulting are intimately related in fold-and- 
thrust belts, and they represent the effects of combined 
brittle and ductile processes of deformation. Several 
distinct structural associations have been described. 
These include fault-bend folds (Suppe, 1983, 1985, fig. 
9-43), in which the fold forms as a consequence of the 
hangingwall conforming to the shape of the footwall 
where the fault passes from one flat to another at a ramp. 
A second type is a fault-propagation fold (Suppe and 
Medwedeff, 1984; Suppe, 1985, fig. 9-47) in which the fold 
forms to accommodate the loss of displacement at a fault 
tip at a thrust ramp. A detachment fold (Jamison, 1987) is 
formed at a fault tip in a similar way, but there is no 
association with a ramp. In all the above, the folds form 
as a consequence of the thrusting. In other cases the folds 
form first and the thrusts later (Dixon and Liu, 1992). In 
break-thrust folds (Fischer et al., 1992; Woodward, 
1992), which are of this type, a thrust is generally parallel 
to bedding in hangingwall and footwall, but cuts across 
bedding at a high angle through the limb of a fold. 

Where folds form as a consequence of thrusting, it is 
usually the hangingwall that is assumed to take up all or 
most of the deformation (e.g. the structures illustrated by 
McClay, 1992, pp. 419-433). This does not have to be the 
case, as has been emphasized by Ramsay (1992). Also, a 
complex association of folds and faults may develop in 
duplexes as a result of the progressive collapse of either 
the hangingwall or footwall (Dahlstrom, 1970; Boyer and 
Elliott, 1982). Where thrusts and folds develop in 
sequence, there is the problem of establishing the order 
of stacking (i.e. following a piggyback sequence or 

reverse or more complex order), and of establishing 
whether individual folds are associated with the footwall 
or the hangingwall. There is substantial literature on 
interpreting structures in fold-and-thrust belts (Dahl- 
Strom, 1969; Boyer and Elliott, 1982; Boyer, 1986; 
Jamison, 1987; McClay, 1992). 

The relationship between a thrust fault and associated 
folds is most clearly seen when the displacement is small, 
such that the initial configuration can be established with 
some confidence. In addition, the geometrical relation- 
ships are most clear in small-scale structures exposed in 
outcrop. Figure l(a) illustrates an early stage of ramp- 
related folding where a thrust cuts up from the base to the 
top of a competent sandstone layer. In this case both 
hangingwall and footwall have undergone similar 
amounts of deformation (see also Ramsay, 1992, fig. 
15b). A more advanced stage is shown in Fig. l(b), with a 
well-developed ramp anticline in the hangingwall. The 
structures shown in Fig. l(a & b) were referred to by 
Cloos (1961) as wedges and the process that produced 
them as wedging. 

Most of the work on folding in fold-and-thrust belts 
has been directed towards establishing geometrical 
relationships of folds and thrusts and the construction 
of permissible cross-sections based on limited data and 
principles of section balancing (Dahlstrom, 1969; Elliott 
and Johnson, 1980; Mitra and Namson, 1989). The rules 
of such reconstruction usually involve no change in bed 
length or thickness, straight limbs, and a consequent 
accommodation of folding by slip between layers and 
kink-fold geometry. Deformation in such circumstances 
is according to the well-defined rules of flexural slip 
folding (Ramsay, 1967, p. 392). Although significant 
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Fig. 1. Field examples of fault-related folds (after Cloos, 1961, 1964) 
from the Silurian Bloomsburg Formation, western Maryland. (a) 
Wedge fold in a sandstone bed in cleaved shales; (b) ramp anticline 

near the hinge of an anticline. 

advances have been made in the understanding of the 
mechanics of thrust systems as a whole (Elliott, 1976; 
Chapple, 1978; Davis et al., 1983; Dahlen et al., 1984; 
Dahlen and Barr, 1989), there has been relatively little 
work on the mechanics of associated faulting and folding, 
certainly in part because it is not easy to generate 
analytical models that allow for both brittle and ductile 

behavior. 
Initial work in studying the mechanics of folding in 

hangingwalls was done by using an analytical approach 
to analyze the flow of a viscous hangingwall over a rigid 
(Berger and Johnson, 1980) or deformable (Kilsdonk and 
Fletcher, 1989) footwall. This work showed the impor- 
tance of fault drag on the shape of the ramp-related fold. 
In recent years, finite-element models based on viscous 
flow laws have been used to show the importance of 
anisotropy on the shape of and strain distribution in 
ramp-related folds (Lan and Hudleston, 1995). Also, 
finite-element models of fault-bend folding have been 
developed (Reddy et al., 1982; Apperson and Goff, 1991; 
Erickson, 1995) in which rock layers and faults can be 
assigned more realistic material properties, allowing for 
deformation of the rock by viscous or plastic flow, and 
with faults assigned normal and shear elastic stiffnesses 
and coefficient of friction. Erickson and Jamison (1995) 
and Erickson (1995) combined viscous and plastic 
behavior in their models, arguing that the viscous 
behavior simulated pressure solution and the plastic 
behavior cataclasis, both important processes in fold- 
and-thrust belts. They showed how deformation mechan- 

isms from these different behaviors could be expected to 
vary around fault-bend folds. 

Another fruitful approach to studying fault-related 
folding has been by the application of physical models 
using analog materials and rocks. Chester et al. (1988, 
1991) performed unscaled experiments to study ramp- 
related folding in a sandstone layer, in which deforma- 
tion occurred by microfracturing and faulting. They 
showed that fold development was strongly dependent 
on the strength ratio given by ‘resistance to foreland 
translation’ relative to ‘resistance to internal deforma- 
tion’. When this ratio is low, fault-bend folding results; 
when it is high, fault-propagation folding is favored. 
Dixon and Liu (1992) and Liu and Dixon (1995) have 
performed scaled analog modeling using Plasticine and 
silicone putty. Buckling played a key role in their models 
in localizing stresses that initiated faulting and duplex 
formation. 

In this paper we make use of the finite-difference 
program FLAC (Fast Lagrangian Analysis of Continua) 
(Cundall and Board, 1988) to study the initiation of 
folding and plastic deformation associated with a ramp in 
a pre-existing thrust fault. A most interesting feature of 
this code is its ability to simulate localization of 
deformation. This arises from the specification in the 
constitutive relationships of non-associated plasticity 
(Vermeer and de Borst, 1984). This can be considered to 
simulate the initiation of faulting in the upper crust. 
Cundall(1990), for example, has shown how FLAC can 
simulate the development of conjugate faults during 
rifting and graben formation. Features of FLAC and its 
application in our modeling are described in the next 
section. 

Our models were inspired by outcrop-scale folds in the 
early stages of development associated with ramps in stiff 
layers throughout Mesozoic strata in southwestern 
Montana (Fig. 2) as well as by published examples from 
Cloos (1961, 1964) (also Fig. l), Eisenstadt and De Paor 
(1987) Martinez-Torres et al. (1994) and others. 
Although the models are to some extent scale-indepen- 
dent (if we neglect the effect of gravity), we have chosen to 
model outcrop-scale structures in these simulations 
because such structures provide the best control on 
geometry and distribution of fabric and smaller-scale 
fractures. 

NUMERICAL MODELING 

FLAC is a two-dimensional explicit finite-difference 
code designed for geomechanics applications (Cundall 
and Board, 1988; Coetzee et al., 1995). It has many 
similarities to and several advantages over finite-element 
methods (Reddy, 1993) that make it ideal for geologic 
modeling. The explicit finite-difference formulation 
results in there being no ‘stiffness’ matrices to be inverted 
during each time-step. This is a great computational 
advantage that to some degree is offset by the need for 
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Fig. 2. Early-stage wedge folds in limestone beds within marls from the 
Cretaceous Kootenai Formation, south-western Montana. (a) At the 
earliest stage of fault slip. The incipient thrust ramp is nearly planar, and 
there is only the first hint of brittle-plastic deformation at the tips of the 
wedges. Knife for scale is 10 cm. (b) A more evolved wedge fold showing 
reduced ramp angle, and the development of a ramp anticline in the 

hangingwall. Rock hammer for scale. 

small time-steps. In finite-element models all nodes are in 
communication during each time-step, and iteration is 
necessary to achieve compatibility and equilibrium. In 
the FLAC method, the time-step must be small enough to 
ensure that the physical wave velocity never exceeds the 
‘calculation wave velocity’; that is the time-step is small 
enough that information over this time interval cannot 
pass physically from one element to the next (Cundall 
and Board, 1988). FLAC updates coordinate positions 
using displacements calculated from the previous time- 
step, which is easily done as there is no global stiffness 
matrix to invert. The grid therefore is displaced along 
with the material it represents. To simulate geologic 
processes, models may be run either to static equilibrium 
or to failure. The way the dynamic equations of motion 
are included in the formulation assures that with non- 
linear materials the numerical scheme utilized is stable 
even when the physical process being modeled may not 
be. F‘or our applications, the simulation is ‘pseudo- 
static’. Kinetic energy is both generated and dissipated 
during the simulation and is manifest as transient inertial 
‘spikes’ within the model. 

One of the most useful and interesting aspects of the 
code is its ability to simulate localization of plastic 
deformation. In a given elastic-plastic model, strain 
may be accommodated either by distributed deformation 
or by initiation of ‘shear bands’. This results from 
bifurcation in the governing equations, which can lead 
to localization, even without a strain-softening constitu- 
tive relation, provided that the dilation angle is lower 
than the friction angle (Rudnicki and Rice, 1975; 
Vardoulakis, 1980). When friction angle and dilation 
angle are unequal, the situation is referred to as non- 
associated plasticity (Vermeer and de Borst, 1984), and 
this is most appropriate for upper crustal geologic 
materials, in which plastic behavior is combined with 
pressure-dependent frictional, dilatant behavior (Cun- 
dall, 1990). FLAC uses a non-associated plasticity 
formulation in that the angles of internal friction and 
dilation are taken as separate parameters. Localization is 
grid dependent; i.e. if there are enough elements, 
localization is sure to occur even when using a ‘simple’ 
Mohr-Coulomb material. Also, the length scale of 
localization (thickness of shear bands) is provided by 
the element size rather than by a physical quantity such as 
grain size. Shear-band localization occurs partly due to 
the inclusion of the dynamic equations of motion in the 
code formulation; shear-band formation releases strain 
energy which is dissipated within the model in a 
physically realistic way. 

In the models we treat the bands of localized 
deformation as simulating zones of brittle failure, that is 
faults. The presence or initiation of a shear-band does not 
however introduce any additional discontinuity into the 
numerical model. All interfaces within the models are 
true discontinuities, and these are created prior to the 
simulation; all continuous regions remain continuous 
throughout the simulation. 

Model set-up 

Another advantage of FLAC for this modeling is the Geometry. Taking outcrop-scale structures as our 
relative ease with which interfaces can be built into the prototype (Figs 1 & 2), we set up the basic configuration 

model to simulate faults, bedding planes and joints. 
Interfaces are assigned normal stiffnesses and shear 
stiffnesses, and coefficient of sliding friction, and can be 
assigned optional properties such as tensile strength and 
cohesion. Interfaces can slip and separate or can be 
‘glued’ to prevent slippage and separation. 

The behavior of the rock continuum in our studies is 
described by Mohr-Coulomb plasticity, which involves a 
yield function and a non-associated plastic flow rule, 
formulated in terms of effective stress, not total stress, in 
plane strain. This represents shear failure in soils and 
rock masses (Vermeer and de Borst, 1984). The specific 
constitutive model we use is referred to in FLAC as the 
strain-softening model. For our simulations, though, we 
are not making use of the hardening/softening capabil- 
ities, rather, for the sake of simplicity we define the 
material as elastic-perfectly plastic. 
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Fig. 3. (a) Boundary conditions for the four numerical models, all with 
initial dimensions of 20 m x 5 m. V=velocity (displacement/time-step); 
P= pressure. Hachured pattern indicates the boundary is fixed in the 
horizontal and vertical directions. Stippled pattern indicates blocks with 
elastic only behavior. (b) Final geometries of the four models. 
Maximum displacements are: A, 1.2 m (6% shortening); B, 2.1 m 

(10.5% shortening); C and D, 4.5 m (22.5% shortening). 

of all our models (Fig. 3a). It consists of a simple three- 
layer sandwich: (1) a 2-m thick ‘soft’ elastic-plastic upper 
unit (bread), (2) a l-m thick elastic-plastic faulted stiff 
layer (cheese), above (3) a 2-m thick base (bread). The 
package is 20 m long, and the bottom layer is either an 
elastic-plastic soft layer capable of large strains (models 
A and D), or an elastic layer that remains nearly rigid 
relative to the elastic-plastic units (models B and C). In 
the latter case this represents a thick, competent unit 
above which detachment and deformation take place. 

The stiff layer contains a simple pre-determined 
straight interface (fault) that dips 30” toward the left in 
the center of the model. We have seen such fractures in 
the field that clearly have become the locus of thrust and 
fold initiation (Fig. 2a). Conceptually, the stiff layer 
represents a meter-thick competent limestone unit in 
between less-competent shale- or clay-rich carbonate 
layers or, in the case of models B and C, the lower unit 
represents a nearly rigid structural beam. 

Materials. The proper choice of material properties for 
accurate modeling of geologic phenomena at varying 
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scales is important, yet good data for a number of the 
parameters are elusive. Data such as the elastic 
stiffnesses, friction angles, dilation angles, cohesion, etc. 
of rocks and of joints collected from laboratory-scale 
specimens may not be appropriate for larger-scale rock 
systems-even at outcrop scale -due to the ideal intact 
nature of laboratory specimens as well as the inherent 
inhomogeneity, anisotropy and discontinuity of field 
materials. In principle, as the rock mass to be modeled 
becomes larger, it becomes weaker than a laboratory 
specimen of the same rock due to an increase in 
discontinuities or flaws per volume of the larger sample 
compared to the smaller one. In the extreme, values for 
the elastic moduli of rocks of as little as 1% of published 
laboratory values may be appropriate for modeling large- 
scale rock-mass problems (C. Fairhurst, personal 
communication). Because of this potential two-order- 
of-magnitude variation in elastic moduli between 
laboratory and large-scale samples, one is tempted to 
simulate phenomena at a smaller rather than a larger 
scale, because the available data are more likely to be 
accurate for the simulation. This temptation must be 
balanced by the need for the models to be accurate at 
nearly the same scale as the features observed in the field. 
For this reason we make our models simulate the outcrop 
scale of several meters. We feel that while published 
laboratory values of material properties are likely to be 
somewhat higher than those appropriate for the ‘meso- 
scale’ of these models, the variability found in the 
literature for a given rock type (i.e. limestone or shale) 
makes accurate material matching difficult. In developing 
these models, our experience shows that varying the 
elastic moduli by an order of magnitude or less has an 
influence on final geometry and structure evolution. Since 
our intent in making these models is not to match any 
specific field example, but rather to capture behavior that 
appears common to many, we have created ‘generic’ stiff 
and soft layers using material properties from published 
analyses of limestone and shale (Goodman, 1980). The 
material properties used in all simulations are listed Table 
1. 

hitial and boundary conditions 

One of the primary goals of numerical modeling of any 
phenomenon is to understand how natural examples 
evolve. For a geologist interested in simulating specific 

Table 1. Material properties used in models 

Bulk modulus Shear modulus Friction angle Cohesion Density 

Stiff layer 
Soft layers 

Fault 
Bedding 

22.6 x lo9 Pa 
8.8 x lo9 Pa 

Normal stiffness 
lxlO”Pam-r 
1 x 10” Pam-’ 

11.1 x lo9 Pa 
4.3 x lo9 Pa 

Shear stiffness 
1 x 10” Pam-’ 
lxlO”Pam-’ 

42” 
14” 

Friction angle 
5” 
1” 

6.72 x IO6 Pa 
38.4x 106Pa 

2.6 kg m-* 
2.69 kg mm2 
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field examples as well as more general types of fault/fold 
geometry this requires some physical understanding of 
the natural system and some trial-and-error in setting up 
the models. From field observations, one can postulate 
several different boundary conditions that may be 
appropriate for fault-related folding, all involving an 
initial state of a fault ramp cutting across a competent 
layer. Structural observations on the proximity, orienta- 
tion and sense of movement on any nearby faults or, say, 
the presence of a layer-parallel shortening (LPS) fabric 
(Geiser, 1988) help determine appropriate stress or 
displacement boundary conditions to apply to the edges 
of the model domain. In our simulations the boundary 
conditions in each model do not change during each 
model run. Geologic evidence, however, might indicate 
an evolution in boundary conditions with time. This 
could be investigated. One of our simulations involves 
overall horizontal shortening in ‘pure shear’ (Fig. 3a, A), 
because the field evidence favors this for structural 
initiation at the earliest stages of shortening within an 
evolving fold-thrust belt (Fig. 2a; Geiser and Engelder, 
1983). Three involve ‘far-field’ differential displacement 
of the hangingwall over the footwall at the proximal end 
of the block (Fig. 3a, B-D), and one of these involves no 
differential displacement at the distal end (Fig. 3a, B). 
Because we are beginning with four models that have 
identical initial geometries and material properties 
(except that in models B and C the basal units have 
elastic-only constitutive laws), the differences in evolu- 
tion of the models are due to differences in the imposed 
boundary conditions. 

All models are brought to equilibrium in an elastic 
state using a confining pressure of - 1.324 x lo8 Pa on all 
four sides of the model, which is equivalent to an 
overburden of 5 km given an overburden density of 
2700 kg m-’ (we are using the convention that negative 
pressures are compressive). Since these are ‘pseudo- 
static’ simulations, equilibrium is considered to be 
achieved when the maximum unbalanced force within 
the model drops to an appropriately low value relative to 
the applied load and remains low. For these simulations 
this occurs with unbalanced forces of about 1 x lo6 Pa. 
Once static equilibrium is achieved, boundary conditions 
are applied to the model and time-stepping begins. There 
are three principal types of boundary conditions used in 
the models: velocity (displacement), stress, and fixed 
(where the boundary is fixed in x and y in space). There 
is also what we refer to as the P’ condition (Fig. 3a), 
which is required by the evolving geometry of models C 
and D and will be described below. 

Model A: paired fault-propagation style folds without 
through-going fault (A, Fig. 3a & b). Model A is the 
simplest. The boundary conditions are essentially 
equivalent to a uniaxial compression test with the axis 
of compression oriented horizontally and a confining 
pressure, P (lithostatic load), applied to the top and 
bottom sides of the model. The shortening is achieved by 

applying a velocity, V, of 0.05 mm per time-step at both 
ends of the model in opposite directions. 

Model B: fault-propagation style fold without through- 
going fault (B, Fig. 3a & b). In this model the right 
boundary is fixed. The left side is split, with a rightward 
velocity of 0.1 mm per time-step applied to both the 
middle stiff layer and upper soft layer. The upper and 
lower boundaries have an applied compressive lithostatic 
load, and the base block is not allowed to deform 
plastically. The bottom side is fixed. 

Model C: fault-bendstylefold (C, Fig. 3a & b). Model C 
has the boundary conditions usually associated with 
fault-bend style folds. The base is fixed. The left side is 
as in model B; split with a right-directed velocity of 
0.1 mm per time-step applied to the unit above the base. 
The right side is split with a compressive modified 
pressure, P’, applied to the hangingwall and fixed below 
the split. The top has an applied lithostatic load. The 
values of P and P’ are the same except that the boundary 
on which P acts is modified in the following way. With a 
split right side the hangingwall will ‘fall’ off the side of the 
model as it gets translated against the applied load. This 
is clearly a geometric artifact of the model that can be 
dealt with numerically in a number of ways. It could be 
done by making the footwall block longer, or by 
supporting the hangingwall block in the ‘air’ so that it 
does not exert unwanted moments on the model. We have 
chosen another tack, which utilizes FLAC’s macro 
language. We monitor the location of the furthest right- 
hand node of the hangingwall, just above the fault, 
relative to the furthest right-hand node of the footwall. If 
this hangingwall node is pushed to the right of the 
footwall node (i.e. is overhanging), then the column of 
grid elements to the left of the ‘offending’ hangingwall 
node is eliminated. This has the effect of lightening the 
hangingwall each time a column is eliminated, and this 
could adversely and unrealistically effect the model by 
unbalancing the system. However, by monitoring 
maximum unbalanced forces within the models we are 
confident that accelerations resulting from this are not 
significant. 

Model D: wedge-folds with through-going fault (D, Fig. 
3a & b). Model D is a hybrid of models A and C: The top 
and bottom are subjected to lithostatic loads, and the 
lower block is deformable. The left side is split between 
the base and stiff layer, with a velocity of 0.1 mm per 
time-step applied to the upper layers, while the right side 
is split between the upper block and stiff layer. Lateral 
movement of the upper block is resisted by an applied 
compressive stress, P’, equivalent to the lithostatic load. 
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RESULTS 

In each model run, data defining the current state were 
saved after every 3000 time-steps (0.3 m displacement). 
This allows us to ‘re-occupy’ the model at various stages 
and investigate its evolution. We ran the models until 
they could progress no further under the given boundary 
conditions, or until we were satisfied with the amount of 
displacement (Fig. 3b). The maximum total displacement 
of the left end of the hangingwall was 4.5 m in models C 
and D. 

In all models the applied loads caused both slip on the 
interfaces and internal deformation of hangingwall and 
footwall, mostly associated with the fault ramp. At the 
earliest stage of the experiments slip occurs first either at 
the fault ramp (model A) or at the left boundary (models 
B, C, D), and in all models plastic deformation occurs 
first in the ramp region. Both slip and plastic deformation 
occur in an uneven manner that reflects the build-up and 
dissipation of energy. Principal stresses are generally 
horizontal and vertical, except in the vicinity of the ramp, 
where maximum compression is at a high angle to the 
ramp at zones of contact and local variations are often 
marked. Zones of incremental shear-strain, as revealed 
by the ‘snapshot’ every 3000 time-steps, occur sporadi- 
cally and in transient pulses throughout the model run. 

It is most instructive to follow the evolution of the 
magnitudes of finite shear-strain (displacement based), 
ymax, and incremental shear-strain (velocity based), Ymax, 
and track the relationship between the two (see Figs 4 & 
5). As would be expected, contoured plots of finite shear- 
strain, viewed at successive stages of a simulation, show a 
gradual increase in amount and in area of rock ‘damage’. 
Zones of incremental shear-strain however, viewed at the 
same time-step, may or may not coincide with zones of 
high finite strain, although obviously their integration 
over time yields the finite strain. They are typically 
organized into bands and occur as transient pulses. The 
evolution of incremental strain shows that there is a 
stochastic element to the pattern of development of these 
fault-fold systems. A zone of failure develops and then is 
deactivated as stresses are relieved and build-up else- 
where. Many zones are then later reactivated. Since there 
is no strain softening or weakening in our models, 
activation and reactivation are favored not by changes 
in material properties, but by the local variability of the 
stress state associated with unloading and redistribution 
of stresses following failure events. 

Also present in these models are void spaces that open 
along interfaces in response to movement of hangingwall 
over footwall, causing a mismatch in shape once 
displacement has occurred. Voids are most clearly 
evident in models A and B in the cores of the asymmetric 
folds, and they are also present in the early stages of 
models C and D, but are later reduced to very thin gaps 
along the fault surface. The voids, which are areas of low 
pressure, may simply be part of the early evolution of 
these structures, and in natural examples may be 

preserved in the field as calcite or quartz in-fillings. 
The initial orientation of the fault ramp is 30”, and it 

appears that with increased displacement there is a 
tendency for the ramp angle to be reduced in all models. 
In this respect there is a progression from model A, which 
has the least amount of displacement and almost no 
change in ramp angle, through model B with somewhat 
more displacement, to models C and D which have 
significantly larger displacements. 

Model A 

With loading conditions similar to those of a displace- 
ment-controlled uniaxial compression test, there can be 
no through-going fault in model A (Fig. 3b, A). Slip 
occurs on the fault ramp, but decays quickly in both 
directions along the flats towards the ends of the model, 
where no slip is possible. The result is an antisymmetric 
structure with overturned folds of opposite vergence 
above and below. With progressive shortening, voids 
open up along the fault adjacent to the wedge-tips of the 
stiff layer. Severe distortion of the wedge tips and opening 
of voids caused problems with the mesh, and the model 
‘locked up’ after only 1.2 m of displacement (6% short- 
ening). 

Finite shear-strain is concentrated in the soft layers in 
well-defined zones that extend from and are nearly 
parallel to the pre-existing ramp in the stiff layer. The 
shear-zones act to transfer displacement from the fault 
surface into the surrounding soft layers. Because of the 
small total displacement there is little plastic strain 
recorded in the stiff layers; what strain there is, is 
concentrated in the overturned wedge-tip. There is no 
significant reduction of the ramp angle. 

Model B 

This configuration, with restraint on the lower layer 
and push at the left end applied only to the stiff layer and 
upper soft layer, restricts folding to the hangingwall and 
produces a structure that is similar to a fault-propagation 
or fault-tip fold (Suppe, 1985; Jamison, 1987) (Fig. 3b, 
B). Slip is transferred from the lower flat, up the ramp to 
the upper flat, where it dies out in an asymmetric fold. 
The fold fore-limb is nearly vertical and the vergence is in 
the hangingwall transport direction. In this case, no 
plastic deformation of the lower soft layer was allowed; it 
was kept elastic apriori. As in model A, a void appears at 
the top of the ramp. 

As in model A, distortion of the wedge tip and the void 
opening caused mesh problems that limited maximum 
displacement, in this case to 2.1 m (or 10.5% shortening). 
Conjugate zones of high finite shear-strain are located in 
both the upper soft layer and the stiff layer where it is bent 
to accommodate movement over the ramp. The two 
zones intersect at the footwall ramp. The more intense 
one, associated with forward thrusting, is parallel to and 
extends upwards from the ramp in the stiff layer (best 
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Fault bend-fold with through-going fault 
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Fig. 4. Sequential diagrams illustrating the evolution of model C, at 0.3,0.9,1.8,2.7,3.6 and 4.5 m displacement respectively. 
(a) Contours of maximum finite shear-strain, ymax; the value at stage 6 is 0.6. (b) Contours of maximum incremental shear 

strain (strain rate), imax; thevalueatstage6is8.0x10-ssec-‘. 

seen in Fig. 6a). The other one dips at a similar angle in Model C 
the opposite direction, consistent with incipient back 
thrusting. This is similar to model B in that the lower soft layer is 

Displacement vectors show that displacement is constrained to lie on a rigid base and is only allowed to 
transferred from the fault to the rearward-dipping zone deform elastically, but does not restrain the movement of 
of high shear-strain at the top of the ramp (Fig. 7a). the hangingwall soft layer to the right. These conditions 
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Wedge fold with through-going fault 

Finite 

(a) @I 

Incremental 

Fig. 5. Sequential diagrams illustrating the evolution of model D, at 0.3,0.9,1.8,2.7,3.6 and 4.5 m displacement respectively. 
(a) Contours of maximum finite shear-strain; the value at stage 6 is 0.45. (b) Contours of maximum incremental shear strain 

(strain rate); the value at stage 6 is 2.5 x 10e5 see-‘. 

result in a throughgoing fault and a fault-bend style fold fault in the final state, but voids are present during the 
(a ramp anticline) in the hangingwall as it moves over the early stages of the model run, and are later reduced to 
ramp in the footwall. The interface between the stiff layer thin gaps along the fault surface. 
and upper soft layer and the upper soft layer itself Finite and incremental shear-strain patterns in the 
together form a smooth, basically symmetric fold with hangingwall (Fig. 4) show that a forward-dipping zone of 
gentle limb dips (Fig. 3b, C). A significant footwall bulge high incremental and finite shear-strain develops in the 
(or a low-amplitude anticline) develops in the top of the hangingwall as it moves from flat to ramp. This zone 

stiff layer near the top of the footwall ramp (Fig. 4, stages stays fixed with respect to the footwall while a widening 

4-6 and Fig. 10). There are no significant voids along the zone of finite shear-strain develops in the hangingwall. 
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Fig. 6. Comparison between our model B at two stages (a) and the experimental models of Chester et al. (1991) (Fig. 5) using 
rocks (b). (a) Contours of finite shear strain in model B indicate areas of brittle-plastic deformation. Contour interval is 0.05 in 
upper and 0.1 in lower figure, with maximum finite shear strains of 0.25 and 0.9. (b) Line drawings of rock models of Chester et 

al. (1991) show areas of strong brittle-plastic deformation which match the strain distribution seen in (b). 

Displacement patterns for model C (Fig. 7b) differ activated with net rightward displacement of the hang- 
strongly from those of model B (Fig. 7a), and clearly ingwall. The result is an antisymmetric wedge-fold with 
show the effect of a throughgoing fault. open, nearly symmetric folds in the soft layer above 

and below the ramp. There is significant flattening of 
Model D the ramp angle with increasing displacement. As in 

model C, there are no significant voids along the fault in 
This differs from model A only in two end boundary the final state, but voids are present during the early 

conditions, which cause a throughgoing fault to become stages of the model run, closing up as the ramp becomes 
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Fig. 7. Plots of displacement vectors at intermediate stages of shortening in two models. (a) Model B. Displacement is 
transferred from the fault surface at the ramp up into the soft layer as a result of the non-slip end condition imposed on the 
right side, yielding a displacement field associated with fault-propagation style folds. (b) Model C. Releasing the upper right- 

side boundary, allowing slip, produces a smooth displacement field over the ramp, consistent with fault-bend style folds. 
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more gentle and the angularity of the ramp flat transition any stress state as a point, the evolution of stress state 
reduced. with time is represented as a line. 

Patterns of finite shear-strain are essentially identical 
in the hangingwall and footwall (Fig. 5). By the end of the 
run, they show two diffuse conjugate zones of shear, one 
forward-dipping and the other backward-dipping, which 
cross in the center of the model. The deformation is less 
intense in the soft layers, and more intense within the stiff 
layer. Within the stiff layer, most evident at an early stage 
of deformation, zones of high strain lead away from the 
bends in the fault surface, each zone making a conjugate 
pair with the ‘zone’ represented by slip on the fault ramp 
(Fig. 5a, stages 1, 2). These zones become wider as the 
simulation progresses (Fig. 5a, stages 3-6). Comparison 
of patterns of incremental shear-strain and finite shear- 
strain (Fig. 5) at various times in the simulation shows 
that zones of incremental shear-strain stay fixed with 
respect to the bends in the fault while the zones of high 
finite shear-strain move with the hangingwall and foot- 
wall up and down the ramp, respectively. As it migrates 
past the bends in the fault, the hangingwall accumulates 
‘damage’, creating widening zones of finite shear-strain. 
The same is true for the footwall. 

The Mohr-Coulomb failure criterion can be written in 
terms of principal stresses (Paterson, 1978) as: 

where: 

cl = a3N& - 2C,fi, (1) 

N 
(b 

= 1 + sin 4 
1 - sin 4’ (2) 

and where cl and cr3 are the maximum and minimum 
principal stresses, respectively; C, is the material cohe- 
sion and 4 is the angle of internal friction. 

This failure condition is shown by a solid straight line 
in Fig. 8. On the ol-g3 plots in Fig. 8, stress states above 
the failure envelope (solid line) are stable (i.e. elastic), 
stress states at plastic yield lie on the envelope. The 
starting states for our models are represented by the stars 
in Fig. 8. They are close to a lithostatic state of stress, 
which is represented by the dashed line. 

Failure plots 
This model and model C are not restricted by fixed 

right-side boundaries like models A and B, and therefore 
they can be run to an arbitrary displacement. Both 
models were taken to a 4.5 m maximum displacement 
(22.5% shortening). 

FAILURE MAPPING 

The areas affected by incremental and finite plastic 
deformation can be represented graphically by maps as in 
Figs 4 and 5, and these show the likely location of faults 
or areas of general cataclastic deformation in the 
material. Further insight into the evolution of rock 
failure within an evolving structure can be gained by 
plotting magnitudes of stresses at a given location as a 
function of ‘time’. We can imagine possible stress paths 
for sedimentary rocks that may become involved in 
thrust belt tectonics. Initially a rock mass might be close 
to a lithostatic state of stress (a, = e2 = 0s) as it experi- 
ences burial. This can result only in volumetric strain. 
Later, due to regional compression it may deviate from 
this state and deform elastically, but not reach the yield 
stress. At some point the differential stress may become 
great enough to cause the material to yield, and plastic 
flow begins. The material may remain at yield and 
continue to deform plastically, or it can return to an 
elastic state, perhaps to return to yield one or more times. 
Such stress histories are represented in our models and we 
investigate them using 01--~3 plots (Fig. 8). 

We present in Fig. 8 stress plots for model C only. 
Eight points were chosen in the middle of the hangingwall 
half of the stiff layer. They are labeled according to the 
numbering scheme for nodes within the model, and are 
selected in order to illustrate the behavior in the region 
that moves over the footwall ramp. Note that the vertical 
and horizontal scales on the stress plots are unequal. 
Although there are significant differences, these plots 
have some features in common. (1) The initial stress state 
at all locations within the fold is basically the same, being 
nearly lithostatic. It represents the pressure applied to 
simulate an overburden of 5 km. For failure to occur, 
there must be either an increase in ol, a decrease in c3 or a 
combination of the two. (2) There is a general movement 
to the right after the simulation begins, corresponding to 
an increase in gl, which results from stresses induced by 
the horizontal shortening of the model prior to displace- 
ment on the fault. (3) Yield is reached in all 8 locations for 
varying amounts of time. 

An advantage of treating failure in principal stress 
space rather than Mohr (r--6) space is that it is 
graphically much simpler (Jaeger and Cook, 1969, 
p. 88). The stress state is represented by a point rather 
than by a circle. A bigger advantage is that by plotting 

The jerky nature of the paths reflects stress changes 
accompanying the discrete slip events on the fault and the 
initiation of shear bands. As expected, there is a direct 
correlation between the form of the stress plot (Fig. 8) 
and the finite and incremental strain history (Fig. 4). The 
relative amount of time that the stress path stays on the 
failure envelope corresponds to the total amount of 
‘damage’ or finite strain that accrues in a particular 
location within the model. For instance, locations 10, 12, 
14 and 16 all spend a significant amount of time on the 
failure envelope and are in locations within the model 
that show high finite shear-strain. These contrast with 
locations 20 and 22, which spend most of the model run- 
time in elastic space, and are at locations within the 
model that show very little finite shear-strain. When the 



Fold initiation at thrust ramps 561 

-1BtO8 

I 
-ZE+OE-CE+08 -6X+08 -BE+06 -2X+08 -4E+08 -68+08-81 

I 
I8 -2B+08 -4X%+08 -6B+08 -8B+O8 

, I 0 -2B+08 -4E+08 -6E+08 -BE+08 0 -28+08 -4E+08 -6E+08 -8E+08 -2!3+08 -4E+08 -6E+08 -BE+08 0 -2~+08 -4~+08 -6B+08 -81 

Fig. 8. Plots to track failure at selected locations within the hangingwall ramp anticline in model C. Contours in the central 
panel are of finite shear strain, identical to those of Fig. 4(a) (stage 6). The plots show the evolution of the stress state in 
principal stress space. The vertical axis is 03 and the horizontal is cr. Note the scales are not similar. The initial state is marked 
by a black star and the final state by a white star/pentagon. The failure envelope is the solid line and lithostatic stress state 
(0, = us), the dashed line. Location numbers are element nodes in the model. The amount of finite strain or ‘damage’ that 

occurs at a given location in the model is a function of the amount of run-time spent on the failure envelope. 

stress path is on the failure envelope, the location 
concerned lies within a zone of high shear-strain-rate. 

DISCUSSION 

Fractures at the proper angle for becoming thrust 
ramps are common in competent beds in some fold-and- 
thrust belts (Fig. 2a), and there is little doubt that at least 
some of these become activated as ramps and lead to the 
development of the kind of fault-related folds displayed 
by our models. How these fractures originate in the first 
place is beyond the scope of this paper. There is little 
evidence, however, given the planarity of the strata in 
some locations, that they were caused by an increase of 
stresses on the limbs of earlier-formed buckle folds 
(Dixon and Liu, 1992; Liu and Dixon, 1995), but rather, 
may have formed in the earliest stages of fold-and-thrust 
belt evolution as shear fractures related to horizontal 
shortening (Gretener, 1972; Eisenstadt and De Paor, 

1987). All of the basic fold-fault relationships produced 
in the models (Fig. 3) have their counterparts in rocks and 
in physical model experiments. Wedge folds, with foot- 
wall and hangingwall roughly equally affected (Fig. 3b, 
D), are common in nature (Fig. la, Cloos, 1961, 1964; 
Martinez-Torres et al., 1994), at least at the outcrop scale. 
Natural fault-propagation style folds (Fig. 3b, B) are also 
common and have been produced in non-scaled experi- 
ments using rocks (Fig. 6b, Chester et al., 1988, 1991). 
Fault-bend style folds (Fig. 3b, C) are the most classical 
of fault-related folds (Rich, 1934; Suppe, 1985) and many 
natural examples exist (e.g. Fig. 1 b). In both experiments 
of Chester et al. and in our models, the factor that 
determines whether a fault-propagation style fold or 
fault-bend style fold develops is the ‘resistance to fore- 
land translation’ relative to ‘resistance to internal 
deformation’. It seems likely that this relative resistance 
could be affected either by the local mechanical condi- 
tions (i.e. strength of the layers involved), or by 
differences in far-field loading caused by development of 
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structures on a larger scale. That is, once a ramp has 
developed elsewhere, the forces favoring foreland trans- 
lation will be increased. What determines whether or not 
the footwall becomes deformed depends largely on the 

rigidity of the strata below the affected stiff layer. The one 
style of structure in the models that seems uncommon in 
nature is the paired fault-propagation style fold (Fig. 3b, 
A). Martinez-Torres et al. (1994, fig. 2c) have illustrated a 
structure that is of this type. 

There is a striking similarity between the pattern of 
deformation in the hangingwall stiff layer as it moves up 
and over the ramp in our models, in the physical models 
of Chester et al. (1988, 1991) (Fig. 6b), and in the 
analog models of Morse (1977). In all three a progres- 
sive sequence of back-thrusts develops in the hanging- 
wall from the flat-ramp transition in the footwall, and 
the strained or ‘damaged’ rock thus formed is then 
carried somewhat passively up the ramp. A second, but 
less intense, zone of fractured rock develops in the tip of 
the hangingwall wedge as it moves over the upper ramp- 
flat transition. These phenomena are expressions of fold 
hinge migration. In our models, most of the folds are 
broad with poorly defined hinges. The pattern of 
asymmetry of deformation in the ramp anticline in 
model C (Figs 3b, C & 4a), with the back-limb more 
highly strained than the fore-limb, might not be taken 
in a natural fold as resulting from hinge migration. The 
lack of angularity of all our folds, except those at the tip 
of the wedges in fault-propagation type folds, is 

striking. 
Perhaps the most significant feature of our models, not 

present in other numerical models of fault-related 
folding, is the localization of deformation, induced by 
stress bifurcation. This simulates faulting in the brittle 
regime (Vermeer and de Borst, 1984; Cundall, 1990). 
Localization occurs as a consequence of the adoption of a 
non-associated plasticity constitutive relationship in the 
model. This mechanism of localization differs from those, 
such as strain softening or fabric softening, normally 
associated with deformation in ductile materials. Rud- 
nicki and Rice (1975) and Vardoulakis (1980) showed 
that even if the material does not soften, given a dilation 
angle lower than the friction angle (non-associated 
plasticity), localization will occur even in the hardening 
regime: so called ‘stress-state softening’ (Cundall, 1990). 
This is what is occurring in our models, in which the 
dilation angle is 0”. Localization occurs numerically due 
to extremely small effects such as slight perturbations of 
the grid from one time-step to another due to inertial 
forces. The effect is illustrated in Fig. 9. When localiza- 
tion occurs, the stress in one zone is decreased compared 
to the stress in the immediately adjacent material. Despite 
the reduction in stress, material in the affected zone - a 
shear band - is at failure, whereas that outside is not 
(Fig. 9a & b). The normal and shear stress across the 
shear band interface must be the same, and this results in 
stress refraction across the boundary and principal 
stresses within the band at nearly 45” to the boundary 

(c) 

Fig. 9. (a, b) Schematic illustration of stress state bifurcation and 
localization associated with the formation of shear bands in a 
cohesionless material (after Cundall, 1990). (a) Mohr diagram showing 
stresses inside (2) and outside (0) the shear band immediately after 
localization. Stresses parallel to the band indicated by subscript P and 
stresses normal to the band by subscript N. (c) Detail from model C at 
stage 5 (see Fig. 4), showing the relationship between incremental shear 
strain (strain rate), defining a shear band as indicated by the contours, 
and principal stress orientation. Stresses within the shear band are 
smaller than outside and are oriented at approximately 45” to the shear 

band boundary. 

(see Cundall, 1990). An example from model C (stage 5) is 
shown in detail in Fig. 9(c). 

Besides the prominent shear bands or faults that 
develop in back-thrust orientation in the hangingwall in 
our models, there are other patterns of interest. One of 
these is the appearance of zones of failure in the footwall 
(Fig. 10) that represent the incipient shearing off of the 
top of the ramp and collapse of the footwall. This 
represents either the initiation of duplex development or 
a horse that may become carried with the hangingwall. 
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Fig. 10. Detail at an intermediate stage (between stages 4 and 5 of Fig. 4b) of a fault-bend style fold near the top of the fault 
ramp. (a) Contours of shear strain rate in the footwall show a rampflat geometry associated with duplex formation. (b) 
Velocity vectors show differential movement in the footwall ramp region indicating incipient footwall collapse and duplex 

formation. 

This incipient footwall collapse is manifest as zones of 
high finite shear-strain that have the familiar ramp-flat 
geometry within the continuous stiff layers (Fig. 10a). 
Such behavior is present in models B, C and D, the last 
having them in both the hangingwall and footwall, and it 
is related to and likely the cause of the slight bulges that 
are present in the footwall stiff layers of models B and C, 
and in the early stages of model D. 

An interesting pattern is shown in Figs 9(c) and 4(a) in 
which bedding-parallel failure occurs in the stiff layer to 
form shear bands in the synclinal hinge of the hanging- 
wall. This is very similar to the phenomenon noted by 
Kuenen and De Sitter (1938) in folding experiments with 
thick clay slabs. It represents initiation of flexural slip in 
otherwise massive layers. Occasionally several parallel 
such shear bands occur, the spacing of which depends on 
the mesh size. The phenomenon of spaced shear bands is 
not inherent to mesh geometry, as shown by Cundall 
(1990). 

Another feature of the models is that deformation 
associated with shear bands does not proceed in an 
orderly and predictable manner, but rather occurs in fits 
and starts that represents turning on and off of individual 
faults or shear bands. This phenomenon is associated 
with the build-up and release of elastic energy in the 
models. To a greater or lesser extent it is present in all the 
models. 

The rather symmetric fold shapes in our models C and 
D (Figs 4 & 5) are similar to the shapes of folds produced 

in other models of ramp-related folding in which there is 
low resistance to slip on the fault, including the viscous 
flow analytical models of Berger and Johnson (1980) and 
Kilsdonk and Fletcher (1989), and the finite-element 
models involving plastic deformation and viscous flow of 
Erickson and Jamison (1995). The mechanism by which 
the hangingwall accommodates movement over the 
ramp, however, is quite different in these various 
models. Deformation in the viscous flow models is 
broadly distributed, and such flow could simulate either 
crystal-plastic processes (which behave as non-linear 
fluids) or diffusive mass transfer in rocks, depending on 
conditions under which thrusting occurs. Deformation in 
the models of Erickson and Jamison (1995) is less broadly 
distributed, with plastic failure occurring in the hanging- 
wall above fold hinges, and viscous strain developing in 
similar locations, but also in the footwall where pressure 
is high yet differential stresses are less and therefore 
insufficient to cause failure. Pressure-dependent plasticity 
in the models of Erickson and Jamison (1995) and in our 
models simulates deformation involving fracture and 
frictional slip in upper crustal rocks. However, the non- 
associated plasticity in our models, not present in the 
models of Erickson and Jamison, leads to the develop- 
ment of localization in ours. Each localization event, 
examples of which are captured in the incremental strain 
plots of Figs 4 and 5, simulates a new fracture zone 
developing and some associated increment of plastic 
strain. The strain associated with these events accumu- 
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lates to build up zones of ‘damage’, especially evident in 
the hangingwall as it moves up the ramp (Figs 4a & 5a). 
Unlike rocks, however, the material in our model is not 
weakened by the accumulation of strain, because no 
strain softening or hardening is incorporated into the 
flow rule. 

Our models simulate best near-surface crustal condi- 
tions in which the dominant deformation mechanism is 
fracture and frictional slip. These conditions also are 
appropriate to the physical models of Chester et al. (199 1) 
and analog models of Serra (1977). The deformation 
pattern is very similar in all of these. It is likely, in nature, 
that varying slip rates and ramp angles, which will affect 
the stress level that builds up, will cause different 
mechanistic response in rocks under the same general 
physical conditions. Knipe (1985) showed how the 
deformation mechanisms in the hangingwall will depend 
on the geometry of the ramp and rate of slip. Slow slip 
rates and gentle ramps favor diffusive mass transfer, 
intermediate conditions favor crystal-plastic flow, while 
fast slip rates and high ramp angles favor brittle behavior 
and possible truncation of the top or base of the ramp 
(Knipe, 1985). Ramp truncation is well developed in our 
model C, in which the footwall shows incipient collapse. 
The slower-rate mechanisms described by Knipe are not 

simulated by our models. 
In all our models there is a tendency for the ramp angle 

to decrease with increasing displacement on the fault. 
This is most pronounced when both hangingwall and 
footwall are deformable (Fig. 3b, D). By reducing the 
ramp angle, the resistance to deformation and the 
distortion of the hangingwall and footwall are reduced. 
This phenomenon was noted in the physical model 
experiments by Morse (1977) and in the natural examples 
described by Serra (1977). It is the opposite of what 
would occur if homogeneous shortening developed in the 
layer without slip on the fault, as would occur under 
conditions of slow slip and diffusive mass transfer 
(Knipe, 1985). 

CONCLUSIONS 

A variety of fold styles were developed in our 
numerical models of deformation at thrust ramps 
involving elastic behavior and failure, fault slip, and 
pressure-sensitive plastic flow. Under conditions that 
restrict throughgoing faulting, antisymmetric fault-pro- 
pagation style folds develop in both hangingwall and 
footwall. With rigid footwall and restricted distal slip in 
the hangingwall, a single fault-propagation style fold 
develops. With distal displacement of the hangingwall 
allowed, the ramp forms a perturbation on an otherwise 
flat and unbounded fault, and broader antisymmetric 
wedge folds develop if hangingwall and footwall are both 
deformable. A single fault-bend style fold develops if the 
footwall is rigid. All structures become accentuated as 
slip increases on the fault. If both hangingwall and 

footwall are deformable, the deformation reduces the 
ramp angle and tends to minimize distortion of the rock 
adjacent to the fault. 

The structures produced in our models all have 
counterparts in nature, and we believe that the cause of 
the variation in style of folds associated with fault ramps 
may be the same in nature and in experiment. In the 
models, behavior is controlled by varying the boundary 
conditions, and this is likely to be the case in nature also, 
where loading of the boundaries of the zone in which the 
structure is to develop depends on ‘far-field’ structure, 
stratigraphy, and stresses. Effects similar to those due to 
varying the boundary conditions could be obtained by 
varying material properties of the rock layers and the pre- 
existing faults and bedding planes. Whether by varying 
boundary conditions (as we demonstrate here) or by 
varying material properties, there appear to be two 
important factors that determine the style of structures 
developed: (1) the relative resistance to foreland transla- 
tion versus internal deformation (Chester et al., 1991) 
and (2) the extent to which the footwall is deformable. A 
systematic parametric study would help elucidate this 
further. It is important to note that our models do not 
simulate the non-brittle deformation mechanisms of 
diffusive mass transfer or crystal-plastic flow, which are 
active in ramp-associated deformation under suitable 
conditions, and which help determine the geometry of the 
structures developed (Knipe, 1985). 

While we examined here only the early stages of 
development of fault-related folds, we believe that many 
structures on all scales in fold-and-thrust belts have 
evolved from the kind of structures we have modeled. 
With evolution of natural ‘far-field’ boundary conditions 
from general early-stage sub-horizontal shortening 
(Geiser and Engelder, 1983) to overall simple shearing 
associated with large thrust systems, some of these 
structures will become the locus for significant regional 
slip, while others will become preserved as incipient 
structures as in Fig. 2. 

It is likely that, as deformation proceeds, it becomes 
progressively more difficult to trace the origins of 
particular structures as being of fault-bend or fault- 
propagation type, as noted by Liu and Dixon (1995) in 
their physical models. Also, although many folds in fold- 
and-thrust belts are likely to originate from deformation 
associated with displacement at thrust ramps, others 
probably develop by buckling and subsequently become 
associated with thrusting (Fischer et al., 1992; Liu and 
Dixon, 1995). Numerical modeling may help us under- 
stand better the evolution of these different types of 
structure, and provide criteria for distinguishing among 
them. This could be done by comparing the spatial and 
temporal evolution of failure and deformation in model 
and nature, using plots of incremental or finite shear- 
strain in the models (Figs 4 & 5) and making maps of 
fracture intensity and inference of principal stress 
orientations in natural structures (Wickham et al., 
1982). In addition, techniques such as failure mapping 
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(Fig. 8) allow us to evaluate the discrete nature of 
deformational activity associated with fault-related fold- 
ing, and give us a better idea of how the structures we 
observe in their final state may develop. 
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